Воистину, человеческие потребности безграничны. Вся наша жизнь строится на основе этой прописной истины. Все мы стараемся оставить как можно больше столбовых камней на своем пути и достичь новых высот. Все мы постоянно участвуем в бешеной гонке на выживание, пробиваясь сквозь болота и заросли будничных неурядиц, преодолевая мыслимые и немыслимые барьеры, неутомимо создаваемые для нас окружающим миром. И смело пытаемся набрать как можно большую скорость в этом безудержном движении вперед.

Но порой наступает момент, когда уже просто жизненно необходимо хоть ненадолго остановиться, отпустить руль, снять ногу с педали газа и, смахнув пот со лба, хорошенько поразмыслить: а правильный ли темп нами выбран, соответствует ли он действительной надежности и совершенству нашего гоночного кара, и не случится ли так, что на самом трудном и ответственном вираже его пламенный мотор заглохнет или полетит трансмиссия?

Именно такие мысли возникают у вашего покорного слуги, если речь заходит об очень популярном в рядах пользователей занятии, звучно именуемом оверклокингом. Есть, правда, и родное, русскоязычное наименование этого феномена - разгон. Но последнее слово в большей мере относится все-таки к демонстрациям пацифистов, чем к компьютерным системам, поэтому в современном лексиконе оно употребляется все реже и реже. Тем не менее, как бы мы не называли этот увлекательный процесс, суть его одна - увеличить частоту тактового сигнала микропроцессорных компонентов и устройств оперативной памяти ПК на определенную величину относительно штатного (типового) значения и получить в результате «бесплатное» повышение быстродействия компонентов ПК.

Действительно, оверклокинг - это феномен, причем уже глобального масштаба. Если раньше он был уделом только энтузиастов компьютерного андэграунда, увлекавшихся перепайкой процессоров и «кварцев» (кварцевых осцилляторов), то теперь буквально каждый домашний компьютер в предельно упрощенной и чрезвычайно дружелюбной форме предлагает даже самому зеленому новичку вкусить полузапретный плод «совершенно безвозмездного» повышения быстродействия ПК. Сегодня оверклокинг становится уже целым мировоззрением, своего рода новой религией. И пастыри, провозглашающие постулаты «процессор без разгона - не процессор», «материнская плата без функций оверклокинга - бестолковый кусок текстолита», «разгоняйте, и да пребудет с вами бесплатная сила самых быстрых процессоров» и т. д. и т. п., конечно, без паствы не остаются.

Между тем, такое положение вещей вызывает неоднозначную реакцию среди компьютерных профессионалов и экспертов. Мнения разделяются вплоть до диаметрально противоположных. Одни специалисты утверждают: «Оверклокинг - в целом благо для пользователя, если подходить к нему с умением и осторожным оптимизмом. Можно немного сэкономить, но получить вполне качественную и быстродействующую разогнанную систему, эквивалентную более дорогому ПК!». Другие гневно возражают: «Оверклокинг - сыр в мышеловке, не имеющий ничего общего с экономией. Независимо от умения или оптимизма пользователя компьютер все равно ставится под удар при разгоне. Это все тонкий маркетинг, направленный против кошелька потребителя. Чем больше железа будет ломаться, тем больше будут покупать!». И если вдруг носителям этих двух идей подворачивается возможность задушевно подискутировать, то разгорается нешуточная сеча с применением оружия массового поражения в виде смачных ругательств или даже рукоприкладства. :)

В самом деле, что же представляет собой оверклокинг? Действительно ли это, образно говоря, дешевый и надежный автомат Калашникова, легко обставляющий аналоги и не дающий осечки, если уметь с ним обращаться? Или же напротив, это граната с сорванной чекой, завернутая в цветастый фантик «заботливыми» производителями компьютерных компонентов и вложенная в руки незадачливого пользователя? Давайте попробуем разобраться, тщательно взвесив плюсы и минусы феномена оверклокинга!

Практические аспекты

Итак, для начала попытаемся выяснить, зачем же все-таки пользователи неугомонно стремятся повысить быстродействие своих компьютерных систем путем оверклокинга, какие цели ими при этом преследуются и достигаются ли они на практике.

Не секрет, что основное применение среднестатистического домашнего ПК - это, прежде всего, игры. Сторонники оверклокинга заявляют: «Разгон позволяет увеличить производительность компьютера в играх». И в подтверждение своих слов показывают тонны распечаток оверклокерских статей, приводят массу ссылок на обзоры с игровыми тестами железа, где наглядно виден прирост (порой очень весомый) числа кадров/с, баллов, попугаев и прочих единиц оценки игровой производительности ПК. Казалось бы, вполне реальный и осязаемый плюс оверклокинга, как говорится, на лицо: производительность-то действительно увеличивается! Однако когда речь заходит об игровых тестах, из зоны всеобщего внимания постоянно ускользает один очень важный момент: а отражают ли эти тесты реальный геймплэй в той или иной практической ситуации? Парадоксально, но, как правило - нет! Не отражают и в помине!

Типический случай: некоторая штатная компьютерная система демонстрирует в какой-то одной популярной стрелялке, скажем, 130 кадров/с, а в другой, крутой и супернавороченной - 35 кадров/с. При умеренном оверклокинге (немного подразогнаны процессор и видеокарта) получаются 145 и 40 кадров/с. Дале в ход идет экстремальный оверклокинг (разгон процессора и видеокарты по самое не хочу, усиленный твикинг памяти, твикинг операционной системы), и система демонстрирует уже 200 и 55 кадров/с, соответственно. Прирост скорости, кажется, просто очевиден! Но реальный геймплэй, между тем, практически не претерпевает изменений! Не верите? А зря!

Геймплэй первой стрелялки итак находится уже на весьма приличном уровне даже в штатной конфигурации системы, и при разгоне (будь то умеренный или экстремальный) никаких реальных преимуществ не получается: как «тормозов» не было, так их и нет, качество графики не улучшается (наоборот, может только ухудшиться вследствие разного рода артефактов), количество поверженных врагов отечества возрастать и не думает. Со второй стрелялкой выходит примерно такая же ситуация, но в несколько ином ракурсе: там как были «тормоза» в случае штатной производительности системы, так они остались и при разгоне (даже экстремальном), графика не изменяется, либо ухудшается, и злобные монстры-мутанты по-прежнему продолжают нещадно крошить неповоротливого игрока. Сходной, кстати говоря, будет картина и в других игровых приложениях, где скоростные показатели не менее важны (авто-, авиасимуляторы, экшены и т. п.). Другими словами, как видим, тестовый «прирост скорости» иметь место-то имеет, но ощутимой практической пользы он не привносит, за исключением разве что психологической удовлетворенности от достигнутых «результатов» оверклокинга в виде восхитительных значений fps. :)

Таким образом, тезис «разгон позволяет увеличить производительность компьютера в играх», безусловно, правильный, но на деле толку от этого увеличения в различных шутерах/экшенах получается обычно совсем немного. Ко всему прочему, среди заядлых геймеров не меньшую популярность снискали игровые приложения, почти что вообще индифферентные к оверклокингу (стратегии, ролевые игры, квесты и т. д.). Все это в итоге ставит целесообразность разгона в применении к играм под очень и очень большие сомнения!

Вторая трудовая повинность типического домашнего ПК - функционирование в качестве мультимедийной станции (музыка, фильмы, обработка аудио-, видео-, фотоматериалов и т. д.). Сторонники оверклокинга заявляют: «Разгон позволяет увеличить производительность компьютера в мультимедийных приложениях». И в подтверждение своих слов вновь ссылаются на статьи и обзоры, но посвященные уже мультимедийным тестам и исследованиям. Да, действительно, тесты опять показывают определенное превосходство разогнанных систем над штатными конфигурациями. Вот, казалось бы, нерушимый плюс оверклокинга наконец-то найден! Пусть с играми и не все гладко, но с мультимедией-то уж полный порядок должен быть, ядрррена вошь! :)

Однако здесь у скептически настроенных пользователей появляется ряд вопросов, с которыми они спешат обратиться к специалистам. Их диалог получается, надо сказать, очень интересным!

Скептики (заинтересованно): - Как разгон влияет на воспроизведение музыки?

Специалисты (особо не задумываясь): - Или никак, или негативно. Практика «разгона по шине» обычно не очень-то благоприятно влияет на работоспособность некоторых звуковых карт и мультимедийных плат ввода-вывода. Интегрированные звуковые решения также не чувствуют себя действительно комфортно в этих условиях.

Скептики (не менее заинтересованно): - А как влияет разгон на воспроизведение фильмов (DivX/DVD)?

Специалисты (задумавшись на пару секунд): - Скорее негативно, чем позитивно. Аккуратный разгон может быть полезен только на очень маломощных конфигурациях компьютеров. Для большинства современных, причем даже «бюджетных» конфигураций ПК (которые на практике прекрасно справляются с типичными аудио-видео потоками) разгон или просто бесполезен, или вреден.

Скептики (немного озабоченно): - А что вы скажете относительно процедур конвертирования файлов различных мультимедийных форматов? Помогает ли здесь разгон?

Специалисты (скрывая улыбку): - Мы, конечно, не думаем о секундах свысока, но тем не менее… Не важно, закончится ли конвертирование на минуту другую позже, или наоборот раньше, главное, чтобы оно закончилось, и без эксцессов!

Скептики (озабоченно): - А скажите, может ли сильный разгон плохо повлиять на работу интерфейсов - USB, например? Вроде проскакивала где-то подобная инфа…

Специалисты (улыбаясь): - Да, есть немало случаев отказа портов USB. Это связано как с не совсем корректным дизайном некоторых пострадавших материнских плат (в основном, платформы AMD), так и с разгоном в частности (особенно если он производится «по шине»). Друзья, это ж просто сущие мелочи, необдуманный разгон может еще и не такие подарочки преподнести!

Скептики (умиротворенно): - Получается, если использовать компьютер в основном как мультимедийную станцию, то с разгоном все-таки лучше не связываться?

Специалисты (широко улыбаясь): - Судя по всему, именно так!

Пожалуй, после просмотра «листинга» этой увлекательной беседы какие-то дополнительные комментарии с моей стороны (как арбитра и внимательного слушателя) относительно мультимедийной «целесообразности» оверклокинга уже не требуются.

Третья основная обязанность домашнего ПК - разнообразная «офисная» работа (вебсерфинг, тексты, художественно-оформительское творчество и т. п.). Сторонники оверклокинга заявляют: «Разгон полезен и в офисных приложениях, так как позволяет увеличить производительность компьютера в этих задачах». И в который раз призывают на помощь статьи и обзоры, демонстрирующие превосходство разогнанных систем над штатными, но теперь уже в «бизнесс-тестах». Однако, как следовало ожидать, скептики вновь не дремлют и тут же парируют с некоторой долей сарказма: «Позвольте, господа оверклокеры, а у вас компьютеры одни только тесты и гоняют, наверно? Может быть, ваш оверклокинг помогает быстрее распечатать свежескаченный реферат? Ваш разогнанный компьютер наверно и интернет ускоряет? Не замечали, буковки в текстовых редакторах тоже быстрее пропечатываются?»

Шутки шутками, но если рассуждать здраво, скептики целиком правы, как ни крути! На кой банан типическим офисным приложениям дался оверклокинг, если с задачами просмотра интернета, обработки текстов, создания вполне приличных документов-презентаций и т.п. итак неплохо справляются даже хилые «бюджетные» системы?! Куда и главное, зачем там что-то еще разгонять? Конечно, есть «офисные» задачи, требующие серьезных вычислительных мощностей от ПК - например, тяжеловесные экономические/бухгалтерские программы, различные процедуры обработки файлов-документов гигантского размера и т. д. Но не надо забывать, что стоимость таких документов может иногда на порядок превышать стоимость самого ПК, оверклокинг в этих условиях неприемлем по определению (хотя бы потому, что им тривиально некогда или некому заниматься). Люди просто пойдут и купят систему на основе процессора Intel Pentium 4 3,06 ГГц и материнской платы от той же Intel, после чего будут радоваться жизни, на пушечный выстрел не подпуская тень оверклокинга. :)

Что имеем в итоге? Похоже, одни только сладкие речи адептов оверклокинга, который, по их мнению, открывает для рядового прижимистого пользователя широчайшие перспективы халявного повышения потребительских качеств ПК. Реальных практических плюсов в пользу этого дела пока не видно (минусы, между тем, уже начинают потихоньку проклевываться). Единственный плюс (скорее социально-психологический, а не практический) - начинающий пользователь, приобщенный к оверклокингу, может смело похвастаться своими достижениями перед приятелями и, как правило, быстрее других познает азы компьютерных наук.

Между тем, так ли безоблачен и увлекателен путь оверклокера, как его стараются обрисовать приверженцы разгона? Все ли эксперименты пользователей по-партизански выдерживают их компьютеры? И не возникает ли у подопытных ПК, так сказать, головокружения от успехов? Давайте выясним!

Технические аспекты

Обычно каждый оверклокер, пусть интуитивно, но понимает, что его любимый процессор все-таки не зря отмаркирован на какую-то определенную тактовую частоту (срабатывает чисто житейское соображение: в AMD ведь нет меценатов, чтобы, скажем, продавать «натуральный» Athlon XP 2700+ гораздо дешевле, чем он есть, под видом Athlon XP 1700+?!). Между тем, после очередного успешного повышения частоты вплоть до поднебесья и скоротечных проверок работоспособности системы каким-нибудь свежеиспеченным «стабилити-тестом» оверклокер радостно вскрикивает: «Ура! Работает, поганец!». И начинает усиленно загонять искорки возникших было сомнений далеко в глубины своего подсознания, упиваясь новым рекордом оверклокинга. Однако если б этот незадачливый оверклокер знал, какие сюрпризы может в дальнейшем преподнести ему разгон, то наверняка не стал бы уж так по-детски радоваться.

Сюрприз первый

Процессор - не камень, как многие думают, а сверхсложное микроэлектронное устройство, на которое в равной степени распространяется влияние всех физических процессов, что имеют место в других изделиях микроэлектроники, и которое имеет вполне определенные технологические пределы своей правильной и надежной функциональности. Негативное влияние на работоспособность процессора оказывает как собственно само повышение рабочей частоты, так и практикуемое оверклокерами дополнительное повышения напряжения питания ядра. Особенно вредоносно как раз повышенное напряжение питания: современные процессоры, выполненные по нормам 0,13 мкм, очень чувствительны к этому параметру, и повышение напряжения даже на 5-10% (что для предыдущих поколений процессоров считалось относительно безопасной процедурой) сильно ускоряет процессы деградации окисла (подробнее об этом в статье ). Скорый отказ процессора - очень вероятный финал таких манипуляций.

У многих еще на слуху шумиха вокруг так называемого SNDS («Sudden Northwood Death Syndrome» - «синдром внезапной смерти Pentium 4 на ядре Northwood»), когда у заядлых забугорных оверклокеров, по наивности задиравших напряжение ядра чуть ли не до 1,9-2 В, «внезапно сгорал» их любимый и капитально разогнанный Pentium 4 Northwood, причем, как они заявляли, «без всяких на то причин». Причины такому неважнецкому поведению процессора, конечно, были, и самая главная из них - как раз ускоренная деградация окисла, которая стала следствием увеличения напряжения питания ядра намного выше всех допустимых пределов. Аналогичный синдром, назовем его STDS («Sudden Thoroughbred Death Syndrome»), имеет место быть и у Athlon на ядре Thoroughbred, только подобные отказы работники сервисов обычно приписывают к «внутренним тепловым повреждениям процессора», вероятнее всего, по незнанию истинных причин.

Процессоры, выполненные по нормам 0,09 мкм, будут еще более капризными в отношении напряжения питания. Вероятно, «разгон напряжением» в будущем вообще может просто исчезнуть как класс.

Сюрприз второй

Разогнанные процессоры потребляют большую мощность (а значит, демонстрируют и большее и тепловыделение), чем их «натуральные» собратья. Так, капитально разогнанные Athlon XP Thoroughbred cpuid681 (т. е. Thoroughbred-B, очень популярные в рядах отечественных оверклокеров) в определенных случаях могут потреблять ток до 50 А и рассеивать тепловую мощность 85-90 Вт! В таких условиях процессор, даже снабженный высокоэффективной системой охлаждения, работает в очень напряженном тепловом режиме (локальная температура отдельных, интенсивно нагруженных блоков может достигать 100°C и выше). Как результат, создаются тепличные условия (и в переносном, и в буквальном смысле) для целого букета вредоносных термоактивационных процессов, среди которых наиболее опасна электромиграция. Горячая парочка вредин (деградация окисла и электромиграция) начинает вовсю хозяйничать в силиконовых недрах процессора, и отказ последнего (уже больше теплового, чем электрического свойства) не заставит себя долго ждать.

Сюрприз третий

Многие материнские платы от популярных тайваньских и китайских производителей (не важно, для Socket A или Socket 478), претендующие на звание «оверклокерских», на практике таковыми совсем не являются. Они не то что разогнанные, а даже «натуральные» процессоры держат не слишком уверенно. Некоторые отдельные экземпляры порой просто поражают своей изобретательностью: елки-палки, как вообще это все худо-бедно, но, однако ж, работает, ведь по всем прикидкам шансов завестись у платы почти что нет?! Так и подмывает воскликнуть: «Честь и хвала китайским инженерам, доблестным труженикам платостроения!». :)

Общая беда многих и многих плат - не слишком оптимальная разводка и весьма посредственные схемы питания процессора, AGP, модулей памяти и т. д., выполненные, так сказать, по норме-минимум. Эти платы «предоставляют» пользователю богатейшие возможности оверклокинга, но реально обеспечить их на уровне железа, как правило, оказываются не в состоянии. Слабосильные двухканальные преобразователи напряжения питания процессора, собранные на далеко не самой передовой элементной базе и, зачастую, с недостаточной фильтрацией как на входе (по линиям +12 В или +5 В), так и на выходе схемы (линии V core), по-прежнему остаются распространенным явлением среди материнских плат Socket A.


Двухканальный преобразователь напряжения: 2 ШИМ-стойки и фрагмент выходного LC-фильтра

Подобные «экономичные» схемы обычно не обеспечивают даже стандартных «электрических» потребностей более-менее мощных процессоров, не говоря уже о разогнанных экземплярах, сильно жадных до тока. Из-за неприемлемой фильтрации здесь линии питания V core зашумлены иногда просто до безобразия: отмечается как сильное высокочастотное дребезжание сигнала (производитель «экономит» на проходных SMT-конденсаторах), так и недопустимые выбросы напряжения в моменты переключения транзисторов в ШИМ-стойках (производитель «экономит» на сглаживающих электролитических конденсаторах или ставит изделия сомнительного качества). В результате серьезно страдают и процессор, и сам преобразователь напряжения. Начинают появляться разного рода «зависоны», сбои, отказы (которые часто списывают на «мастдайный» нелицензионный Windows, «кривые» руки пользователей и т. п., но никогда - на плачевную ситуацию с железом), и о действительно надежной работоспособности системы тут остается уже только мечтать.

Еще свежа в памяти известная «сага о конденсаторах», когда у «счастливых» владельцев некоторых моделей материнских плат (особенно «отличились» в этой «саге» Abit и MSI) лавинообразно текли и вспучивались конденсаторы в цепях преобразователя напряжения, что всегда заканчивалось отказом платы. Возникло даже новое направление бизнеса - перепайка этих конденсаторов, ибо пострадавшие платы выходили из строя в основном по истечении гарантийного срока. :)

Вендоры потом благополучно все списали на факт промышленного шпионажа (надо отметить, с очень занимательным детективным сюжетом), пообещали больше так не делать и использовать только качественные конденсаторы. Однако фактор негативного влияния разгона в очередной раз тихо-смирно остался за кадром: преобразователи-то там работали фактически в предельном режиме, чем и «помогли» конденсаторам отправиться в мир иной (впрочем, те конденсаторы действительно имели весьма сомнительное качество).

Есть шансы, что эта «сага» может получить продолжение и на некоторых недавних и даже свежих материнских платах, через годик-другой.

Разгон оказывает не лучшее косвенное влияние и на «глобальную» разводку материнских плат. «Полнофичные» функции оверклокинга неминуемо сопровождаются появлением на плате разного рода мультиплексоров сигналов VID и FID, немалого количества ключевых цепочек, окружающих блоки джамперов и DIP-переключателей, и серьезным усложнением кода BIOS. Все это перенасыщает плату (некоторые производители умудряются монтировать определенные элементы даже на «обратной» стороне платы, что, вообще говоря, не есть хороший тон проектирования), на пользу ее стабильности явно не идет. Возникает вопрос (судя по всему, риторический): «А почему бы производителям не оставить далеко в стороне увлечение разгонными «фичами» и вместо этого взять, да и развести плату пооптимальнее, поставить на нее нормальные качественные схемы питания и предложить пользователю в итоге качественный надежный продукт, без всяких оверклокинговых фикций?»

Забавно, но на сегодняшний момент к стопроцентно «оверклокерским» платам можно отнести, пожалуй, только некоторые модели от Intel и Fujitsu-Siemens. Однако эти производители не снабжают свои платы оверклокерскими «фичами» (ограничиваясь функциями тюнинга памяти и AGP). И правильно делают!

Список сюрпризов разгона можно свободно продолжить и дальше, но, думается мне, что вполне достаточно и этих первых трех, чтобы осознать, насколько тернист и труден путь оверклокера, и к чему он приводит, в конце концов.

Итак, судя по всему, оверклокинг не только фактически бесполезен, но и представляет серьезную опасность для здоровья компьютера, нервно-психического здоровья пользователя и кошелька последнего. Если разгон на деле оказывается совсем не выгодным пользователю, то кто тогда зажигает эту звезду и поддерживает термоядерные реакции в ней? Попробуем разобраться!

Экономические аспекты

Как правило, пользователь, в той или иной степени пострадавший от сюрпризов оверклокинга во всем винит торгующие организации. И, стоя у окошка гарантийной мастерской, колотит себя в грудь, вопит: «Во гады! Продали мне бракованный процессор, а брать его обратно не хотят, сволочи!». ;-)

Однако, рассуждая логически, можно предположить, что как раз именно тот, кто заказывает музыку, сам обычно и пляшет. Вполне четкие и конкретные плясуны в ходе наших размышлений отлично видны - это, в первую очередь, производители «оверклокерских» материнских плат! Некоторые торгующие организации, конечно, тоже не ангелы: нарушений прав потребителей и навязывания им совершенно левых обязанностей ой как не мало на сегодня! Прочтите внимательно правила гарантийного обслуживания, которые устанавливаются организациями розничной торговли комплектующими/ПК, практически везде они в каких-то отдельных положениях (а иной раз, даже почти во всем) не соответствуют действующему законодательству РФ!

Тем не менее, все лица (физические или юридические), принадлежащие цепочке пользователь-дилер-дистрибутор, изначально оказываются в ущербном положении. Если, допустим, выходит из строя какая-то материнская плата, то в худшем для пользователя случае цепочка обрывается уже сразу на нем. «Тут оверклокингом попахивает! В гарантии отказать!», - оглашает свой вердикт инженер сервисной мастерской (хотя пользователь, возможно, им никогда и не занимался, даже не знает, что это такое!), и покупатель понуро идет домой, с бесполезным уже куском текстолита и негативными эмоциями в отношении продавца. В лучшем случае покупателю производится замена материнской платы или возврат денег (последнее сродни чуду). Но в трудном положении оказывается теперь уже продавец - ему предстоит очень неприятный разговор с дистрибутором. На последнем собственно и оборвется вся цепочка, когда он в очередной раз услышит брошенную венцом пирамиды - вендором, фразу с едва уловимым китайским акцентом: «Obvious overclocking results! Request rejected!» («Нас не проведете! В запросе отказано!»). А что вы еще хотели? Оверклокинг - это строго запрещено! Так что, гуляйте, господа хорошие! :)

Еще одни очевидные танцоры - ушлые дельцы, промышляющие торговлей так называемыми «суперразгоняемыми и стопроцентно оттестированными процессорами», с определенной наценкой относительно их «натуральной» стоимости. Эти деятели хорошо прижились на американских просторах, да и у нас уже начинают кое-где произрастать. Но если в америках гарантии строго оговорены и все-таки исполняются (процессор вам поменяют или отдадут деньги обратно без каких-то особых вопросов, за редкими исключениями), то в наших родных пенатах рассчитывать на подобное добродушие явно не стоит. К тому же гарантия на такие «товары» обычно устанавливается в пределах от двух недель до 6 месяцев, что, надо отметить, вполне разумно со стороны торговцев, ведь дольше эти суперразгоняемые процессоры просто не проработают! Не знаю, кому как, но мне все эти ребята очень напоминают лохотронщиков, делающих свои «безобидные» дела в оживленных местах города.

Что ж, похоже, действительно, кто не рискует, тот не пьет шампанское. В очереди у порога гарантийной мастерской! Кто тут следующий? За кем занимать? ;-)

Вместо заключения

Мужественный матрос Железняк в свое время отчеканил, обращаясь к депутатам учредительного собрания: «Караул устал!». Друзья, не пора ли и нам, добропорядочным потребителям, набраться мужества и заявить: «Мы устали! Мы устали от этого безобразия, имя которому оверклокинг! Также, как и торгующие организации устали бороться с нерадивыми и недобросовестными оверклокерами! Это постоянно и неминуемо затрагивает наши, честных людей, интересы!». И, наконец-то спросить у производителей оверклокерских продуктов: «Господа! А вы сами-то не устали? Не устали проводить политику двойных стандартов в отношении оверклокинга? Или все это, как заправское шоу, должно продолжаться и продолжаться?»

Что же касается вопроса, обозначенного в заголовке статьи, то привилегию ответить на него рискну оставить нашим читателям. Ответ, мне кажется, очевиден. А вам?

Достаточный уровень производительности ПК для многих начинающих пользователей - это нечто эфемерное. Поскольку у каждого пользователя свои собственные представления о том, насколько быстро действенным должен быть его компьютер. Однако в какой-то момент (например, при установке какой-либо ресурсоёмкой программы) юзер наблюдает странное и, скажем правду, неудобное по свойствам своего проявления, поведение вычислительной машины - компьютер начинает нещадно тормозить. В такие моменты пользователю может помочь реализованный процесс - разгон процессора через БИОС. О том, как это правильно делается на практике, что следует учитывать в момент проведения такой оверклокерской операции и как избежать непоправимых ошибок при разгоне CPU, - читайте здесь и сейчас!

Введение в температурную безопасность

Любое повышение тактовой частоты центрального процессора неизбежно ведет к одному - увеличению температурных показателей. Простыми словами - разогнанный процессор будет греться сильнее нежели CPU работающий в штатном режиме (стабильные настройки по умолчанию).

Исключительно в виду последнего фактора увеличивать тактико-технические характеристики ЦП нужно с особой осторожностью. Более того, корректность и благонадежность разгонного процесса может гарантировать только ваша собственная аккуратность и последовательность в действиях. Ну и последнее, прежде чем приступить к практическому разгону ЦП следует внимательно изучить ряд технических вопросов, а именно:

  • Ознакомьтесь с характеристиками установленного процессора (мануал и другого рода справочную информацию можно с легкостью скачать с официальных источников - сайт производителя).
  • Исследуйте вопрос о разгонном потенциале конкретной модификации CPU (к сожалению, производители не любят делиться секретными данными по разгону, поэтому ценную информацию по оверклокингу ЦП можно найти исключительно на специализированных сайтах и форумах).
  • Тщательно изучите характеристики материнской платы - обновите БИОС до последней версии .

После того как вы будете владеть полной информацией о процессоре, иметь понятие что значит резервный потенциал отдельной комплектующей ПК, а ваш разум и сердце преисполнятся уверенностью в благополучности проведения предстоящего мероприятия, - начинайте действовать!

Как разогнать мой процессор: пошаговый алгоритм действий

Прежде всего нужно загрузить несколько специализированных программ:

  • Скачайте утилиту CPU-Z (после установки приложения внимательно ознакомьтесь с таблицей рабочих параметров ЦП - подробнее о процессе взаимодействия с программой будет написано несколько позже).
  • Загрузите на свой компьютер этот софт - AIDA64 (скачать данное ПО можно здесь ).

Это эталонный программный минимум. Использование данного ПО арсенала позволит вам, уважаемые читатели, визуально контролировать изменения в системе и, простыми словами, не натворить бед.

Мониторинг рабочих параметров, после операций программного апгрейда ЦП (также актуально и для других системных компонентов) - процесс обязательный и неоспоримо полезный, в виду обусловленной критичности операций по разгону компьютерных компонентов.

Шаг №1: Осуществляем вход в меню базовых настроек BIOS

В зависимости от версии используемой микросистемы, раздел, в котором вам, дорогие друзья, предстоит вносить изменения может иметь название отличное от указанного в примере, описанном ниже. Однако уловить смысл о правильности выбранного пункта не трудно в виду специфики применяемой стандартизации в названиях опций БСВВ.

В нашем случае, в качестве примера используется новый интерфейс BIOS/UEFI версии 2603 от компании American Megatrends Inc . (наиболее распространенный вариант в современных компьютерах).

Мы остановимся на традиционном варианте - при включении ПК несколько раз нажмите служебную клавишу «F2» или «Delete».

Шаг №2: Какой сценарий разгона применить?

Итак, после того как вы вошли в БИОС, активируйте клавишу «F7», после чего вы окажитесь в меню дополнительных настроек базовой микросистемы.

  • Перейдите по вкладке «Ai Tweaker» в нужный вам раздел.

Здесь следует выбрать конкретный сценарий для разгона, реализация которого должна аргументироваться вашим собственным «усмотрением» касательно вопроса, как сильно вы будете гнать процессор. Наиболее безболезненный способ подкрутить винтики скоростной оптимизации - это вариант «Ai Overclock Tuner» с активной опцией «Auto».

  • Устанавливаем значение в автоматический режим, сохраняем изменения в настройке БИОС (F10) и перезагружаем систему.

Этот вариант имеет ряд преимуществ, система БИОС автоматически выставит значения повышенной производительности, оставляя за собой право распределения системных ресурсов согласно условиям заложенным производителем. Другими словами, активируя упомянутый режим вы максимально обезопасите себя и систему от непредвиденных ошибок, которые могут быть допущены при проведении процесса разгона вручную, о котором подробнее написано ниже.

Ручной метод разгона центрального процессора через BIOS


Какие преимущества дает данный способ апгрейда ЦП:

  • Повышение значений множителя реализуется произвольным методом.
  • Можно увеличить рабочую частоту ядра CPU по собственному усмотрению.
  • Применение ручного метода коррекции параметров вольтажа оговариваемой комплектующей ПК для достижения стабильности в работе ЦП, также допустимо в режиме «Разгон вручную».

Последний пример наиболее опасный и сопряжен с возможной вероятностью повреждения функциональной части CPU. Как вы понимаете, уважаемые читатели, в том случае если вы хотите достичь максимального эффекта в плане программного апгрейда ЦП, без уверенности и твердого убеждения в правильности применяемых настроек здесь делать нечего.

В противном случае вы просто на просто «поджарите кремень». Иными словами - сожжете процессор. Впрочем, как правило БИОС не даст ходу заведомо вредным установкам, ваша система попросту не запуститься.

Для устранения «последней неприятности» необходимо будет вернуть БИОС настройки к их первоначальному состоянию.

Шаг №3: Проверка оборудования после примененного сценария разгона

Итак, после того как вы задействовали разгонный потенциал вашего процессора, требуется провести всесторонний анализ рабочих показателей CPU. Иными словами, необходимо осмотреть «пациента» на предмет его здорового состояния:

  • Открываем установленную ранее утилиту CPU-Z и внимательно ознакамливаемся со списком задействованных параметров.

  • Переходим по вкладке «Тест» в рабочее окно проверки и запускаем служебную утилиту клавишей «Stress CPU».

Процесс последующего теста, для выявления должного уровня стабильности, осуществляется посредством другой программы - AIDA64.

  • Запустите ранее скаченный софт.
  • Перейдите в раздел датчики, убедитесь, что температурные значения в норме.

Внимание: следует учесть, что такие характеристики, как теплоемкость процессора и эффективная способность кулера охлаждения отводить выделяемое ЦП тепло - это неразрывные понятия. Поскольку без должного охлаждения вся затея с разгоном попросту обречена на провал. Убедитесь, что система охлаждения соответствует примененной схеме оверклокинга CPU.

  • Далее, следует провести ряд тестов на стабильность работы разогнанного компонента - перейдите в раздел «Сервис», и активируйте пункт «Тест на стабильность системы» из выпадающего меню программы.

Если процедура проверки на «живучесть» прошла в положительном ключе, то вас можно поздравить. Однако следует понимать, что срок эксплуатации комплектующей, которая работает на максимально допустимых скоростях, сокращается. Поэтому прежде чем радоваться фантастической дееспособности разогнанного ЦП, подумайте, насколько целесообразно «быстро лететь в пропасть цифровой смерти».

Программный оверклокинг процессора

Существует альтернативный метод разгона: можно оптимизировать работу ЦП с помощью специальных утилит.

Для AMD CPU - это программа AMD OverDrive (скачать можно с официального сайта - http://www.amd.com/ru-ru/innovations/software-technologies/technologies-gaming/over-drive ).

Intel процессоры гонятся этой программой - SetFSB (чтобы загрузить софт, кликните по этой ссылке - http://www13.plala.or.jp/setfsb ).

Как в первом, так и во втором случае желаемый эффект достигается только если множитель у процессора соответствует стандарту «Разблокированный». К сожалению, по-другому ни как.

В качестве примера давайте посмотрим, как разгоняется процессор от AMD…

Имеем вот такой CPU с многообещающим дополнением «Black Edition».

Практический разгон процессора

Методы разгона процессора

Существует два метода overclocking"а: повышение частоты системной шины (FSB) и увеличение коэффициента умножения (множителя). На данный момент второй метод невозможно применить практически на всех серийных процессорах AMD. Исключениями из правил являются: процессоры Athlon XP (Thoroughbred, Barton, Thorton)/Duron (Applebred), выпущенные до 39 недели 2003 года, Athlon MP, Sempron (socket754; только понижение), Athlon 64 (только понижение), Athlon 64 FX53/55. В серийных процессорах производства Intel множитель также полностью заблокирован. Разгон процессора путем увеличения множителя является самым "безболезненным" и простым, т.к. возрастает только тактовая частота процессора, а частоты шины памяти, шин AGP/PCI остаются номинальными, поэтому определить максимальную тактовую частоту процессора, на которой он сможет работать корректно, с помощью данного способа особенно просто. Жаль, что сейчас найти в продаже процессоры AthlonXP с незаблокированным множителем довольно трудно, если вообще возможно. Разгон процессора посредством увеличения FSB имеет свои особенности. К примеру, с ростом частоты FSB растет частота шины памяти и частоты шин AGP/PCI. Особое внимание нужно обратить на частоты шин PCI/AGP, которые в большинстве чипсетов связаны с частотой FSB (не касается nForce2, nForce3 250). Обойти эту зависимость можно только если BIOS вашей материнской платы имеет соответствующие параметры — так называемые делители, отвечающие за отношение PCI/AGP к FSB. Рассчитать нужный вам делитель можно по формуле FSB/33, т.е., если частота FSB = 133 MHz, то следует 133 разделить на 33, и вы получите нужный вам делитель — в данном случае таковым является 4. Номинальной частотой для шины PCI являются 33 MHz, а максимальной — 38-40 MHz, выше ее устанавливать, мягко говоря, не рекомендуется: это может привести к выводу из строя PCI-устройств. По умолчанию частота шины памяти поднимается синхронно с частотой FSB, поэтому, если память не имеет достаточного потенциала для разгона, она может сыграть лимитирующую роль. Если очевидно, что частота оперативной памяти достигла своего предела, можно предпринять следующее:

  • Увеличить тайминги памяти (например, 2.5-3-3-5 изменить на 2.5-4-4-7 — это может помочь вам выжать еще несколько MHz из оперативки).
  • Повысить напряжение на модулях памяти.
  • Разгонять процессор и память асинхронно.

Чтение — мать учения

Для начала вам потребуется изучить инструкцию к своей материнской плате: найти разделы меню BIOS, отвечающие за частоту FSB, RAM, таймингов памяти, коэффициента умножения, напряжений, делителей частот PCI/AGP. Если в BIOS нет никаких из вышеприведенных параметров, тогда разгон можно осуществить с помощью перемычек (джамперов) на материнской плате. Назначение каждого джампера вы можете найти в той же инструкции, однако обычно на самой плате уже нанесена информация о функции каждого. Бывает, сам производитель намеренно скрывает "продвинутые" настройки BIOS — для их разблокировки требуется нажать определенное сочетание клавиш (такое часто встречается у материнских плат производства Gigabyte). Повторюсь: всю необходимую информацию можно найти в инструкции или на официальном сайте производителя материнской платы.

Практика

Заходим в BIOS (обычно для входа нужно нажать клавишу Del в момент пересчета объема оперативной памяти (т.е., когда появились первые данные на экране после перезагрузки/включения компьютера, жмите клавишу Del), но встречаются модели материнских плат и с иной клавишей для входа в BIOS — например, F2), ищем меню, в котором осуществляется изменение частоты системной шины, шины памяти и управление таймингами (обычно эти параметры расположены в одном месте). Думаю, что разгон процессора с помощью повышения множителя затруднений не вызовет, поэтому перейдем сразу к поднятию частоты системной шины. Поднимаем частоту FSB (примерно на 5-10% от номинала), потом сохраняем установленные изменения, перезагружаемся и ждем. Если все нормально, система запускается с новым значением FSB и как следствие с более высокой тактовой частотой процессора (и памяти, если вы разгоняете их синхронно). Загрузка Windows без каких-либо эксцессов означает, что полдела уже сделано. Далее запускаем программу CPU-Z (на момент написания статьи последней ее версией являлась 1.24) или Everest и удостоверяемся, что тактовая частота процессора возросла. Теперь нам нужно проверить процессор на стабильность — думаю, у каждого на винчестере есть дистрибутив 3DMark 2001/2003 — они хоть и предназначены для выявления быстродействия видеокарты, но для поверхностной проверки стабильности системы можно "погонять" и их. Для более серьезной проверки нужно использовать Prime95, CPU Burn-in 1.01, S&M (более подробно о программах-тестерах ниже). Если система прошла тестирование и ведет себя стабильно, перезагружаемся и начинаем все сначала: опять заходим в BIOS, еще повышаем частоту FSB, сохраняем изменения и тестируем систему заново. Если во время тестирования вас "выкинуло" из программы, система зависла или перезагрузилась, следует "откатиться" на шаг назад — на ту частоту процессора, когда система вела себя стабильно — и провести более объемное тестирование, чтобы удостоверится в полной стабильности работы. Не забывайте следить за температурой процессора и частотами шин PCI/AGP (в ОС частоту PCI и температуру можно посмотреть с помощью программы Everest или фирменных программ производителя материнской платы).

Повышение напряжения

Не рекомендуется повышать напряжение на процессоре более чем на 15-20%, а лучше, чтобы оно варьировалось в пределах 5-15%. Смысл в этом есть: повышается стабильность работы и открываются новые горизонты для разгона. Но будьте осторожны: вместе с повышением напряжения повышается потребляемая мощность и тепловыделение процессора и как следствие увеличивается нагрузка на блок питания и растет температура. Большинство материнских плат позволяют выставлять напряжение на оперативной памяти до 2,8-3,0 В, безопасной границей является 2,9 В (для дальнейшего увеличения напряжения нужно делать вольтмод материнской платы). Главное при повышении напряжения (не только на оперативной памяти) — контролировать тепловыделение, и, если оно увеличилось, организовать охлаждение разогнанного компонента. Одним из лучших способов определения температуры какого-либо компонента компьютера является прикосновение руки. Если вы не можете без боли от ожога дотронуться до компонента — ему требуется срочное охлаждение! Если компонент горячий, но руку держать можно, то охлаждение ему бы не помешало. И только если вы чувствуете, что компонент еле теплый или вообще холодный, то все хорошо, и охлаждения ему не нужно.

Тайминги и делители частоты

Тайминги — это задержки между отдельными операциями, производимыми контроллером при обращении к памяти. Всего их шесть: RAS-to-CAS Delay (RCD), CAS Latency (CL), RAS Precharge (RP), Precharge Delay или Active Precharge Delay (чаще обозначается как Tras), SDRAM Idle Timer или SDRAM Idle Cycle Limit, Burst Length. Описывать значение каждого — дело бессмысленное и никому не нужное. Лучше сразу выяснить, что лучше: маленькие тайминги или высокая частота. Существует мнение, что для процессоров Intel важнее тайминги, тогда как для AMD — частота. Но не стоит забывать, что для процессоров AMD чаще всего важна частота памяти, достигнутая в синхронном режиме. Для различных процессоров "родными" являются разные частоты памяти. Для процессоров Intel "своими" считаются следующие сочетания частот: 100:133, 133:166, 200:200. Для AMD на чипсетах nForce лучше синхронная работа FSB и RAM, а на связку AMD + VIA асинхронность влияет мало. На системах с процессором AMD частота памяти выставляется в следующих процентных соотношениях с FSB: 50%, 60%, 66%, 75%, 80%, 83%, 100%, 120%, 125%, 133%, 150%, 166%, 200% — это и есть те же делители, но представленные немного по-другому. А на системах с процессором Intel делители выглядят более привычно: 1:1, 4:3, 5:4 и т.д.

Черный экран

Да, бывает и такое:) — например, при переразгоне: вы просто установили такую тактовую частоту процессора или оперативной памяти (возможно, указали слишком низкие тайминги памяти), что компьютер не может запуститься — вернее, он запускается, но экран остается черным, и система не подает никаких "признаков жизни". Что делать в этом случае?

  • Многие производители встраивают в свои материнские платы систему автоматического сброса параметров на номинальные. И вот после такого "казуса" с завышенной частотой или низкими таймингами данная система должна выполнить свою "черную" работу, но это происходит не всегда, поэтому нужно быть готовым поработать ручками.
  • После включения компьютера нажать и удерживать клавишу Ins, после чего он должен успешно стартовать, а вы должны зайти в BIOS и установить рабочие параметры компьютера.
  • Если второй способ вам не помогает, нужно выключить компьютер, открыть корпус, найти на материнской плате джампер, отвечающий за сброс настроек BIOS — так называемый CMOS (обычно располагается около микросхемы BIOS) — и установить его в режим Clear CMOS на 2-3 секунды, а затем вернуть в номинальное положение.
  • Встречаются модели материнских плат без джампера сброса настроек BIOS (производитель делает ставку на свою автоматическую систему сброса настроек BIOS) — тогда нужно вынуть батарейку на некоторое время, которое зависит от производителя и модели материнской платы (я провел такой эксперимент на своей Epox EP-8RDA3G: вынул батарейку, подождал 5 минут, и настройки BIOS сбросились).

Информационные программы и утилиты

CPU-Z — одна из лучших программ, предоставляющих основные данные о процессоре, материнской плате и оперативной памяти, установленных в вашем компьютере. Интерфейс программы прост и интуитивен: нет ничего лишнего, а все самое важное на виду. Программа поддерживает самые последние новинки из мира "железа" и периодически обновляется. Последняя версия на момент написания статьи — 1.24. Размер — 260 Kb. Скачать программу можно по адресу cpuid.com .

Everest Home/Professional Edition (бывшая AIDA32) — информационно-диагностическая утилита, обладающая более продвинутыми функциями просмотра информации об установленном "железе", операционной системе, DirectX и т.п. Различия между домашней и профессиональной версией таковы: Pro-версия не имеет модуля тестирования оперативной памяти (чтение/запись), в ней также отсутствует довольно интересный подраздел Overclock, в котором собрана основная информация о процессоре, материнской плате, оперативной памяти, температуре процессора, материнской платы и винчестера, а также о разгоне вашего процессора в процентах:). В Home-версии нет учета ПО, расширенных отчетов, взаимодействия с базами данных, удаленного управления, функций уровня предприятия. В целом это и есть все различия. Сам я пользуюсь Home-версией утилиты, т.к. дополнительные возможности Pro-версии мне не нужны. Чуть не забыл упомянуть, что Everest позволяет просматривать частоту шины PCI — для этого нужно развернуть раздел Системная плата, кликнуть по подразделу с аналогичным названием и найти пункт Свойства шины чипсета/Реальная частота. Последняя версия на момент написания статьи — 1.51. Home-версия бесплатна и весит 3 Mb, Pro-версия платная и занимает 3,1 Mb. Скачать утилиту можно по адресу lavalys.com .

Тестирование стабильности

Название программы CPU Burn-in говорит само за себя: программа предназначена для "разогрева" процессора и проверки его стабильной работы. В главном окне CPU Burn-in вам нужно указать продолжительность, а в опциях — выбрать один из двух режимов тестирования:

  • тестирование с включенным контролем ошибок (Enable error checking);
  • тестирование с выключенным контролем ошибок, но с максимальным "разогревом" процессора (Disable error checking, maximum heat generation).

При включении первой опции программа проверит корректность вычислений процессора, а вторая позволит "разогреть" процессор практически до температур, близких к максимальным. CPU Burn-in весит около 7 Kb.

Следующей достойной программой для тестирования процессора и оперативной памяти является Prime95. Главным ее преимуществом является то, что при обнаружении ошибки программа самопроизвольно не "вешается", а выводит на рабочее поле данные об ошибке и времени ее выявления. Открыв меню Options -> Torture Test…, вы можете самостоятельно выбрать из трех режимов тестирования или указать свои параметры. Для более эффективного обнаружения ошибок процессора и памяти лучше всего задать третий режим тестирования (Blend: test some of everything, lots of RAM tested). Prime95 весит 1,01 Mb, скачать ее можно по адресу mersenne.org .

Относительно недавно свет увидела программа S&M. Сначала она задумывалась для проверки стабильности конвертера питания процессора, потом была реализована проверка оперативной памяти и поддержка процессоров Pentium 4 с технологией HyperThreading. На данный момент последней версией S&M 1.0.0(159) поддерживается более 32 (!) процессоров и имеется проверка стабильности работы процессора и оперативной памяти, кроме того, S&M имеет гибкую систему настроек. Суммировав все вышесказанное, можно утверждать, что S&M является одной из лучших программ в своем роде, если не самой лучшей. Интерфейс программы переведен на русский язык, поэтому запутаться в меню довольно сложно. S&M 1.0.0(159) весит 188 Kb, скачать ее можно по адресу testmem.nm.ru .

Вышеупомянутые программы-тестеры предназначены для проверки процессора и оперативной памяти на стабильность и выявления ошибок в их работе, все они бесплатны. Каждая из них нагружает процессор и память практически полностью, но хочу напомнить, что программы, применяемые в повседневной работе и не предназначенные для тестирования, редко могут так нагружать процессор и оперативную память, поэтому можно сказать, что тестирование происходит с определенным запасом.

Автор не несет никакой ответственности за поломку любого аппаратного обеспечения вашего компьютера, а также за сбои и "глюки" в работе любого программного обеспечения, установленного на вашем компьютере.

Приветствую! Сегодняшней статьей хочу начать небольшую серию статей на тему оверклокинга. Так как статья базовая, то и рассмотрим мы только базовые понятия, а более подробно коснемся этой темы в следующих статьях. А сегодня вы узнаете, что такое оверклокинг и для чего он нужен.

  1. Что такое оверклокинг? (эта статья)

Что такое оверклокинг простыми словами?

По уже сложившейся традиции, я расскажу вам, что такое оверклокинг так, чтобы всем было все понятно. Без заумных фраз.

Оверклокинг (или разгон компьютера) – это процесс, в ходе которого физическим или программным путем увеличивается производительность ПК.

Говоря про разгон компьютера, подразумевается разгон трех комплектующих – центрального процессора, видеокарты и оперативной памяти. Это все делается самостоятельно и абсолютно бесплатно, поэтому многие пользователи устаревающих ПК сначала пытаются «выжать из него все соки» и только когда этого становится недостаточно – покупают новое оборудование (делают апгрейд железа). Читайте подробнее, и в этом году.

Единственное за что придется заплатить при разгоне компьютера так это за более сильное охлаждение. Почему? Да потому что при увеличении производительности очень сильно увеличивается тепловыделение разогнанных комплектующих. Если пренебречь усовершенствованием охлаждения, то такой компьютер долго не проработает, потому что при нагреве усиливается износ компонентов компьютера. Да, электроника любит комфортные температуры. Вот почему, кстати, производители любой электроники предупреждают, что нельзя допускать прямого попадания солнечных лучей на нее.

Для чего нужен оверклокинг?

Как я уже говорил, оверклокинг увеличивает производительность компьютера. Соответственно нужен он в первую очередь тем людям, которым критически важна мощность ПК, но тратить большие деньги на покупку новых комплектующих нет желания (или возможности).

Такими людьми вполне могут быть геймеры. Например, вышла новая игра, которая идет у вас только на минимальных настройках графики или сильно тормозит. Можно разогнать компьютер и наслаждаться этой игрой. К тому же можно будет немного сэкономить на отоплении помещения.

Также есть люди, которые просто тащатся от оверклокинга и разгоняют все, что им попадает в руки, а потом меряются результатами с другими такими же фанатами разгона. Существуют специальные форумы и сайты, посвященные это теме. Разгоняют даже самые топовые процессоры просто для того, чтобы посмотреть, что из них можно выжать. Однажды попробовав разогнать свой компьютер можно вполне потерять контроль над собой и присоединиться к обществу таких энтузиастов. Держите себя в руках. Во всем нужно знать меру.

Как оверклокинг вообще работает?

Как работает оверклокинг? Или будет корректнее задать вопрос так: за счет каких ресурсов возможен разгон? А все очень просто. Производители всегда закладывают в продукт какой-то запас производительности для того, чтобы этот продукт без проблем отработал свой гарантийный срок.

То есть, один и тот же процессор может работать с разной частотой, но производители подбирают такую базовую частоту для процессора, при которой сводится к минимуму вероятность достижения его критической температуры работы, при которой он может сгореть.

Именно по этой причине очень важно позаботиться о , если вы задумались о разгоне компьютера.

Экстремальный оверклокинг

Вывод:

Если вы хотите узнать, что такое оверклокинг на практике, то советую оставаться с нами. В следующих статьях будут рассмотрены специальные программы для разгона процессора и видеокарты, а также другие способы разгона.

Занимаясь разгоном компьютера в домашних условиях, следуйте золотому правилу «Тише едешь — дальше будешь». Иначе ваш восторг от прироста производительности может быть недолгим. Иногда из строя можно вывести не только разгоняемую видеокарту или процессор, но также и материнскую плату с блоком питания.

Вы дочитали до самого конца?

Была ли эта статья полезной?

Да Нет

Что именно вам не понравилось? Статья была неполной или неправдивой?
Напишите в клмментариях и мы обещаем исправиться!

Думаю, некоторые из вас уже встречались с понятием Overclocking. А может, и не только встречались? Возможно, вы даже применяли данное понятие "на практике". Не в этом суть. Данная серия статей будет полезна как новичкам, так и людям, недалеким от Overclocking`а. Ну что ж, приступим.

Часть 1: Теория

Теория

Мы все учились понемногу чему-нибудь и как-нибудь…" Давайте для начала разберемся, что означает само слово Overclocking. Не будем вдаваться в дословный перевод, поэтому ограничимся только лишь русским понятным синонимом - Разгон .

Основные части компьютера, которые подвергаются разгону:

1. Процессор

(Нам нужно добиться повышения номинальной тактовой частоты процессора).

  • Увеличение частоты системной шины.
  • Увеличение частоты шины памяти. "Игра" с таймингами памяти.

2. Видеокарта

(Разгон ядра и памяти видеокарты).

  • Увеличение частоты графического ядра
  • Увеличение частоты памяти.

Сразу же хочу заметить, что серьезный разгон предусматривает эффективное и правильное охлаждение разгоняемых комплектующих. А также охлаждение особо греющихся компонентов этих устройств: стабилизаторов напряжения и других силовых элементов.

Зачем и кому нужен разгон?

Представьте себе такую ситуацию. Вы решили сделать апгрейд вашего компьютера, а точнее заменить процессор на более новый и производительный. Но для его покупки не хватает денег, а приобрести его очень хочется. Что делать? Копить несколько месяцев? Зачем, если можно "пойти по пути наименьшего сопротивления", т.е. купить менее дорогостоящую модель той же линейки, и разогнать. (С видеокартами дело состоит примерно также). Многие мне могут возразить: "Но для разгона потребуется более эффективная и соответственно более дорогая система охлаждения!". На самом же деле, отдав за более эффективную систему охлаждения на несколько $ больше, вы все равно остаетесь в "выигрыше": после разгона вы получаете более производительный процессор, который обошелся бы вам намного дороже, чем кулер приобретенный для разгона - плюс не всегда нужно покупать новый кулер, можно просто доработать/модифицировать старый, но об этом поговорим позже.

Модели процессоров нижнего и среднего ценового диапазона одной линейки гонятся довольно хорошо и в 90% случаев позволяют получить равную или большую тактовую частоту, чем у топовых (!) моделей процессоров той же линейки. Остальные 10% можно списать на врожденный дефект конкретного экземпляра, из-за чего с ним могут происходить какие-либо проблемы даже на номинальной частоте, однако время, переходы на новые ревизии и степпинги ядра, а также отлаженность производства способствуют уменьшению выпуска бракованных процессоров.

Также существует мнение о том, что впоследствии разгона процессоры "летят". Скажу вам со всей ответственностью, что так просто выйти из строя ничего не может, в том числе процессор, конечно, если вы сами не приложили к этому руку или паяльник:). Но следует помнить, что главный враг при разгоне - температура! На нее нужно обращать особое внимание. В следующих частях статей я расскажу вам более подробно о допустимых рабочих температурах конкретного процессора, а также методы борьбы с ней.

И на будущее: залог удачного разгона - трезвая голова и "прямые" руки, плюс капелька терпения и способность сказать себе Стоп в нужный момент.

А теперь пару слов о том, кому может помочь разгон:

  1. Людям, которые не имеют возможности произвести апгрейд своего компьютера, но желают получить ту же производительность или почти ту же.
  2. Людям, которые имеют возможность сделать апгрейд, но им не хватает денег на процессор, видеокарту и т.п. среднего или верхнего ценового диапазона.
  3. Бедным геймерам
  4. Бенчерам - людям, которые пытаются получить максимальное кол-во "попугаев" в каких-либо тестовых пакетах, добиться максимальных частот и т.п.
  5. Людям, решившим сэкономить на покупке нового компьютера.

Этот список можно продолжать бесконечно. В целом, если вам нужна более высокая производительность своего "железного друга", то разгон вам поможет.

PS . Все вышесказанное относится как к процессорам, так и к видеокартам. Разгоном видеокарты вы имеете реальную возможность повысить работоспособность видеоподсистемы почти бесплатно. Я пишу почти, т.к. для охлаждения потребуется вентилятор (возможно несколько). Для более серьезного разгона графического ядра потребуется заменить уже установленный радиатор на процессорный и немного доработать его, а на чипы памяти установить небольшие радиаторы. Также возможна установка маленьких радиаторов на силовые элементы видеокарты и материнской платы.

Если вы заинтересовались возможностью практически бесплатно повысить производительность своего компьютера - читайте дальше.

Почему разгон вообще возможен?

Производитель тестирует партию процессоров на максимальной частоте (на которой функционирует самая дорогая и производительная модель) и часть, не прошедших тест процессоров, просто отбраковывает, устанавливая им меньшую частоту. Но среди отбракованных процессоров попадаются экземпляры, способные работать на более высоких частотах, чем указанные производителем, поэтому знайте, что если вам попался процессор, не прошедший тестирование на большей частоте, чем указано в его спецификации, у него есть некоторый потенциал для дальнейшего разгона.

Цена разгона

Для удачного разгона вам потребуются качественные комплектующие, например, зарекомендовавших себя с хорошей стороны производителей и соответственно модели, на которые поступает меньше всего жалоб (более подробно чуть ниже). Как вариант, можно зайти на любой форум, посвященный компьютерам, и просто почитать, какие проблемы встречаются с той или иной моделью материнской платы, процессора, БП и т.д. Или пишите мне. На все вопросы я отвечу незамедлительно.

Не стоит забывать о правильной и эффективной организации воздушного охлаждения как процессора и видеокарты, так и системы в целом.

От чего зависит удачный разгон

  • Материнская плата . Производства: Epox, ASUStec, ABIT, Gigabyte и т.д. Модель, зарекомендовавшая себя в разгоне, с поддержкой необходимых функций разгона. О конкретных моделях поговорим в следующих частях статей.
  • Оперативная память . В основном, повышая частоту системной шины (FSB), синхронно с ней повышают и частоту шины памяти (RAM). Поэтому оперативная память должна иметь некий запас повышения частот. Обычно в этом неопытные overclocker`ы и натыкаются "на грабли". Тогда частоты, если, конечно, не помогает увеличение таймингов памяти, FSB и RAM устанавливают асинхронно. Однако и здесь есть свои особенности: к примеру, чипсет nForce2 Ultra 400 показывает большую производительность только в синхронном режиме работы FSB и RAM. О всех этих "секретах" и особенностях вы узнаете в следующих частях.
  • БП (Блок питания) . Можно сказать, что БП есть "центр стабильности" всей системы. От БП зависит гарантия стабильности и продолжительность работы ВСЕГО вашего компьютера. Так называемые, "китайцы" не дают необходимого напряжения на всех основных линиях (12V, 5V), от которых и зависит стабильность работы. Так, мой "старичок" - винчестер Maxtor 541DX 20Gb ушел в мир иной, как раз из-за такого "китайца", кстати, проработали они совместно менее месяца. Делайте выводы, если вы знаете, что у вас установлен не самый лучший БП, то лучше не рисковать с разгоном. Хорошими и подходящими для разгона являются БП следующих производителей: PowerMan, FSP, Chieftec, Thermaltake (список может быть дополнен)
  • Система охлаждения . Я буду рассматривать только воздушные системы охлаждения (кулеры) и способы их модификации, т.к. они более доступны простому человеку и имеют меньшую цену, чем водяные системы. Однако стоит заметить, что частоты процессоров растут и в месте с ними растет уровень тепловыделения, поэтому обычные кулеры уже не всегда могут справиться с возложенной на них задачей (это точно не относится к кулерам серии Zalman 7000:)) . В связи с этим начали появляться не совсем стандартные системы воздушного охлаждения - кулеры с тепловыми трубками. О них я расскажу в следующих частях.

ANTIHacker aka Клементёнок Владимир


Close