Это простая схема, которая может обеспечить энергией электролампочку без каких-либо проводов, на расстоянии почти 2,5 см! Эта схема действует и как повышающий преобразователь напряжения, и как беспроводной передатчик электроэнергии и приемник. Её очень просто сделать и, если усовершенствовать, то можно использовать различными способами. Итак, приступим!

Шаг 1. Необходимые материалы и инструменты.

  1. NPN транзистор. Я использовал 2N3904, но можно использовать любой NPN транзистор, например, ВС337, BC547 и т.д. (Любой PNP транзистор будет работать, только соблюдайте полярность соединений.)
  2. Обмоточный или изолированный провод. Около 3-4 метров провода должно быть достаточно (провода обмоточные, просто медные провода с очень тонкой эмалевой изоляцией). Подойдут провода от большинства электронных устройств, таких как трансформаторы, колонки, электродвигатели, реле и т.д.
  3. Резистор с сопротивлением 1 кОм. Этот резистор будет использоваться для защиты транзистора от перегорания в случае перегрузки или перегрева. Вы можете использовать более высокие значения сопротивления до 4-5 кОм. Можно не использовать резистор, но при этом существует риск более быстрого разряда батареи.
  4. Светодиод. Я использовал светодиод диаметром 2 мм ультра яркий белый. Вы можете использовать любой светодиод. Фактически назначение светодиода здесь - только показывать работоспособность схемы.
  5. Батарея размера АА напряжением 1,5 Вольт. (Не используйте батареи высокого напряжения, если не хотите повредить транзистор.)

Необходимые инструменты:

1) Ножницы или нож.

2) Паяльник (Необязательно). Если у вас нет паяльника, можно просто сделать скрутку проводов. Я делал это, когда у меня не было паяльника. Если вы хотите попробовать схему без пайки, это только приветствуется.

3) Зажигалка (Необязательно). Мы будем использовать зажигалку, чтобы сжечь изоляцию на проводе, а затем используем ножницы, или нож, чтобы соскоблить остатки изоляции.

Шаг 2: Посмотрите видео, чтобы узнать, как это сделать

Шаг 3: Краткий повтор всех шагов.

Итак, прежде всего вы должны взять провода, и сделать катушку, намотав 30 витков вокруг круглого цилиндрического объекта. Назовем эту катушку А. С тем же круглым предметом, начинаем делать вторую катушку. После наматывания 15-го витка создать ответвление в виде петли из провода и затем намотайте на катушку еще 15 оборотов. Так что теперь у вас есть катушка с двумя концами и одним ответвлением. Назовем эту катушку В. Свяжите узлы на концах проводов, так чтобы они не раскручивались сами по себе. Обожгите изоляцию на концах проводов и на ответвлении на обоих катушках. Также вы можете использовать ножницы или нож для снятия изоляции. Убедитесь, что диаметры и количество витков обоих катушек равны!

Создайте передатчик: Возьмите транзистор и поместите его так, чтобы плоская его сторона была обращена вверх и обращена к Вам. Контакт слева будет присоединен к излучателю, средний будет базовым, а контакт справа будет присоединен к коллектору. Возьмите резистор и подключите один из его концов к базовому контакту транзистора. Возьмите другой конец резистора и соедините его с одним из концов (не с ответвлением) катушки B. Возьмите другой конец катушки B и подключите его к коллектору транзистора. Если хотите, можете подключить небольшой кусок проволоки к эмиттеру транзистора (Она будет работать в качестве расширения Эмитента.)

Настройте приемник. Чтобы создать приемник, возьмите катушку А и присоедините ее концы к разным контактам вашего светодиода.

Вы собрали схему!

Шаг 4: Принципиальная схема.

Здесь мы видим принципиальную схему нашего соединения. Если вы не знаете каких-то обозначений на схеме, не волнуйтесь. В следующих изображениях все показано.

Шаг 5. Чертеж соединений схемы.

Здесь мы видим объяснительный чертеж соединений нашей цепи.

Шаг 6. Использование схемы.

Просто возьмите ответвление катушки B и присоедините его к положительному концу батареи. Подключите отрицательный полюс батареи к эмиттеру транзистора. Теперь, если вы приближаете катушку с светодиодом к катушке B, светодиод загорается!

Шаг 7. Как это объясняется с научной точки зрения?

(Я просто попытаюсь объяснить науку этого явления простыми словами и аналогиями, и я знаю, что могу ошибиться. Для того, чтобы правильно объяснить сие явление, мне придется углубляться во все подробности, что я не в состоянии сделать, поэтому я просто хочу провести общие аналогии для объяснения схемы).

Схема передатчика, который мы только что создали это схема Осциллятора. Вы, возможно, слышали о так называемой схеме Вор джоулей, так вот она имеет поразительное сходство с цепью, которую мы создали. Схема Вор джоулей принимает электроэнергию от батареи напряжением 1,5 Вольт, выводит электроэнергию с более высоким напряжением, но с тысячами интервалов между ними. Светодиоду достаточно напряжения 3 вольт, чтобы загореться, но в данной схеме он вполне может загореться и с батареей напряжением 1,5 вольт. Так схема Вор джоулей известна как повышающий напряжение конвертер, а также как излучатель. Схема, которую мы создали также является излучателем и конвертером, повышающим напряжение. Но может возникнуть вопрос: "Как зажечь светодиод на расстоянии?" Это происходит из-за индукции. Для этого можно, к примеру, использовать трансформатор. Стандартный трансформатор имеет сердечник с обеих своих сторон. Предположим, что провод на каждой стороне трансформатора равен по величине. Когда электроток проходит через одну катушку, катушки трансформатора становятся электромагнитами. Если через катушку протекает переменный ток, то колебания напряжения происходят по синусоиде. Поэтому, когда переменный ток протекает через катушку, проволока приобретает свойства электромагнита, а затем снова теряет электромагнетизм, когда падает напряжение. Моток проволоки становится электромагнитом, а затем теряет свои электромагнитные характеристики с такой же скоростью, с какой магнит движется из второй катушки. Когда же магнит быстро движется через катушку провода, вырабатывается электроэнергия, таким образом колебательное напряжение одной катушки на трансформаторе, индуцирует электричество в другой катушке провода, и электричество передается от одной катушки к другой без проводов. В нашей цепи, ядром катушки является воздух, и напряжение переменного тока проходит через первую катушку, таким образом вызывает напряжение во второй катушке и зажигает лампочки!!

Шаг 8. Польза и советы по улучшению.

Таким образом, в нашей схеме мы просто использовали светодиод, чтобы показать эффект схемы. Но мы могли бы сделать больше! Схема приемника получает электричество от переменного тока, так что мы могли бы использовать ее, чтобы осветить люминесцентные лампы! Также с помощью нашей схемы можно делать интересные фокусы, забавные подарки и др. Чтобы максимизировать результаты, вы можете поэкспериментировать с диаметром катушек и числом оборотов на катушках. Также Вы можете попробовать сделать катушки плоскими, и посмотреть, что получится! Возможности безграничны!!

Шаг 9. Причины, по которым схема может не работать.

С какими проблемами вы можете столкнуться и как их возможно исправить:

  1. Транзистор слишком сильно нагревается!

Решение: Вы использовали резистор с нужными параметрами? Я не использовал резистор в первый раз, и транзистор у меня задымился. Если это не помогает, попробуйте использовать термоусадку или используйте транзистор более высокого класса.

  1. Светодиод не горит!

Решение: Может быть очень много причин. Для начала проверьте все соединения. Я случайно поменял базу и коллектор в своем соединении, и это стало большой проблемой для меня. Итак, проверьте все связи в первую очередь. Если у вас есть такой прибор, как мультиметр, можете использовать его, чтобы проверить все соединения. Также убедитесь, что обе катушки у вас одного и того же диаметра. Проверьте, вдруг в вашей сети имеется короткое замыкание.

Я не знаю о каких-либо еще проблемах. Но если вы таки с ними столкнулись, дайте мне знать! Я постараюсь помочь, чем смогу. Кроме того, я ученик 9 класса школы и мои научные познания крайне ограничены, и поэтому, если вы обнаружите у меня ошибки, сообщите мне о них. Предложения по улучшению более чем приветствуется. Удачи вам в вашем проекте!

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

Беспроводная передача электричества

Беспроводна́я переда́ча электри́чества - способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи . К году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % - в 1975 в Goldstone, Калифорния и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до микроволн).

История беспроводной передачи энергии

  • 1820 : Андре Мари Ампер открыл закон (после названный в честь открывателя, законом Ампера), показывающий, что электрический ток производит магнитное поле.
  • 1831 : Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • 1862 : Карло Маттеучи впервые провел опыты по передаче и приёму электрической индукции с помощью плоско спиральных катушек .
  • 1864 : Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля .
  • 1888 : Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца был СВЧ или УВЧ искровой передатчик «радиоволн».
  • 1891 : Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».
  • 1893 : Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго .
  • 1894 : Тесла зажигает без проводов лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хьюстон стрит в Нью-Йорке, с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • 1894 : Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.
  • 1895 : А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) года
  • 1895 : Боше передаёт сигнал на расстояние около одной мили.
  • 1896 : Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года .
  • 1896 : Тесла передаёт сигнал на расстояние около 48 километров.
  • 1897 : Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • 1897 : Тесла регистрирует первый из своих патентов по применению беспроводной передачи.
  • 1899 : В Колорадо Спрингс Тесла пишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха ».
  • 1900 : Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • 1901 : Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.
  • 1902 : Тесла против Реджинальда Фессендена: конфликт американского патента No. 21,701 «Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом».
  • 1904 : На Всемирной выставке в Сент-Луисе предлагается премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м).
  • 1917 : Разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • 1926 : Шинтаро Уда и Хидецугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением », хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».
  • 1961 : Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.
  • 1964 : Уильям Браун и Уолтер Кроникт демонстрируют на канале CBS News модель вертолета, получающего всю необходимую ему энергию от микроволнового луча.
  • 1968 : Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы .
  • 1973 : Первая в мире пассивная система RFID продемонстрирована в Лос-Аламосской Национальной лаборатории.
  • 1975 : Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.
  • 2007 : Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см.
  • 2008 : Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.
  • 2008 : Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.
  • 2009 : Консорциум заинтересованных компаний, названный Wireless Power Consortium, объявил о скором завершении разработки нового промышленного стандарта для маломощных индукционных зарядных устройств.
  • 2009 : Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication .
  • 2009 : Haier Group представила первый в мире полностью беспроводной LCD телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

Технология (ультразвуковой метод)

Изобретение студентов университета Пенсильвании. Впервые широкой публике установка была представлена на выставке The All Things Digital (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, используется приёмник и передатчик. Передатчик излучает ультразвук, приёмник, в свою очередь, преобразует слышимое в электричество. На момент презентации расстояние передачи достигает 7-10 метров, необходима прямая видимость приёмника и передатчика. Из известных характеристик - передаваемое напряжение достигает 8 вольт, однако не сообщается получаемая сила тока. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии на животных.

Метод электромагнитной индукции

Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери все-же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создает переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, все большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щеток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приемник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приемник настроены на одну частоту. Производительность может быть улучшена еще больше путем изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приемная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приемника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющимся беспроводным передатчиком электрической энергии.

Электростатическая индукция

Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст. Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях над уровнем моря и благодаря потоку ионов, то есть, электрической проводимости через ионизированную область, расположенную на высоте выше 5 км. Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через нее и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря емкостному плазменному разряду в ионизированной атмосфере.

Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывался как коммерческий проект по трансатлантической беспроводной телефонии и стал реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования.

Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4.5 миль (7.2 км).

Глобальная система передачи электроэнергии без проводов, так называемая "Всемирная беспроводная система", основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате "короткого замыкания" между заряженной атмосферой и землей.

Всемирная беспроводная система

Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успех можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приемниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения ее полной эксклюзивности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учетом физических свойств нашей планеты».

Одним из условий создания всемирной беспроводной системы является строительство резонансных приемников. Заземленный винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приемной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732, Аппарат для передачи электрической энергии, 18 января 1902 г.). Тесла предложил установить более тридцати приемо-передающих станций по всему миру. В этой системе приемная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приемной.

Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействие объединению электрических генерирующих в глобальном масштабе.

См. также

  • Энергетический луч

Примечания

  1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
  2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
  3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
  4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
  5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
  6. Jagadish Chandra Bose (англ.)
  7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
  8. June 5, 1899, Nikola Tesla Colorado Spring Notes 1899-1900, Nolit, 1978 (англ.)
  9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
  10. The Electrician (London), 1904 (англ.)
  11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
  12. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
  13. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
  14. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
  15. Solar Power Satellite patent (англ.)
  16. History of RFID (англ.)
  17. Space Solar Energy Initiative (англ.)
  18. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
  19. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
  20. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Архивировано ,
    Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Архивировано из первоисточника 29 февраля 2012. Проверено 6 сентября 2010.
  21. Bombardier PRIMOVE Technology
  22. Intel imagines wireless power for your laptop (англ.)
  23. wireless electricity specification nearing completion
  24. TX40 and CX40, Ex approved Torch and Charger (англ.)
  25. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
    Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Архивировано из первоисточника 26 февраля 2012. Проверено 6 сентября 2010.
  26. Eric Giler demos wireless electricity | Video on TED.com
  27. "Nikola Tesla and the Diameter of the Earth: A Discussion of One of the Many Modes of Operation of the Wardenclyffe Tower," K. L. Corum and J. F. Corum, Ph.D. 1996
  28. William Beaty, Yahoo Wireless Energy Transmission Tech Group Message #787 , reprinted in WIRELESS TRANSMISSION THEORY .
  29. Wait, James R., The Ancient and Modern History of EM Ground-Wave Propagation," IEEE Antennas and Propagation Magazine , Vol. 40, No. 5, October 1998.
  30. SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY , Sept. 2, 1897, U.S. Patent No. 645,576, Mar. 20, 1900.
  31. I have to say here that when I filed the applications of September 2, 1897, for the transmission of energy in which this method was disclosed, it was already clear to me that I did not need to have terminals at such high elevation, but I never have, above my signature, announced anything that I did not prove first. That is the reason why no statement of mine was ever contradicted, and I do not think it will be, because whenever I publish something I go through it first by experiment, then from experiment I calculate, and when I have the theory and practice meet I announce the results.
    At that time I was absolutely sure that I could put up a commercial plant, if I could do nothing else but what I had done in my laboratory on Houston Street; but I had already calculated and found that I did not need great heights to apply this method. My patent says that I break down the atmosphere "at or near" the terminal. If my conducting atmosphere is 2 or 3 miles above the plant, I consider this very near the terminal as compared to the distance of my receiving terminal, which may be across the Pacific. That is simply an expression. . . .
  32. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power

Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.

История развития

Развитие передачи электроэнергии без проводов на расстояние связано с прогрессом в области радиотехники, так как оба процесса имеют одинаковую природу. Изобретения в обеих областях связаны с исследованием метода электромагнитной индукции и ее воздействия на образование электрического тока.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

В наши дни

Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

Похожие материалы:

В одной из предыдущих тем мы с вами рассмотрели, как знаменитый сербский ученый Никола Тесла передавал электрический при помощи своего же изобретения - резонансного генератора (катушки Теслы), а как он это делал - подробно описано . Тесле удавалось передавать ток на очень большие расстояния, но кроме метода предложенного Теслой, существует еще один - индукционный. Такой метод конечно не предназначен для дальний передач тока.

Метод индукции не нашел массового применения в науке и технике из-за очень больших потерь модулируемого тока (потерии достигают 60%), к тому же таким методом передать ток более, чем на 1 метр не возможно (теоретически конечно можно, но нет смысла из-за сильного рассеяния поля).


Устройство такой передачи очень простое - два контура, один из них подключен к генератору высокой частоты (в несколько килогерц). Подобное устройство можно легко изготовить дома, простой мультивибратор который расчитан на 20-50 килогерц подключен к усилительному каскаду, к последнему подключен контур который содержит от 10 до 100 витков, второй контур аналог первого. Самое главное в индукционном принципе передачи тока то, что у контуров отсутствует магнитный сердечник, то есть они никак не присоединены друг к другу, а ток передается по воздуху методом индукции.


На практике, как говорилось выше, данным метод применяют очень редко. Такой принцип передачи известен давно - еще со времен Майкла Фарадея (уже 200 лет). И вот в наше время корпорация Нокия решила использовать данный способ и создала концепт мобильного телефона, у которого нет порта зарядки, телефон пока не выпускают серийно, но покупателям такой мобильник точно понравится. В нем встроен приемный контур, а передающий спрятан в подставке. Работает все это очень просто - ставим телефон на поставку и телефон заряжается.


Но это далеко не все преимущества чудо-телефона. Телефон может зарядится и другим способом. Известно, что теле и радио станции модулируют радиоволны, а телефон их собирает приемником и превращает в ток которым телефон заряжается. Такой принцип, и принцип индукционной передачи тока стали использовать и другие производители мобильных телефонов и ноутбуков, и сейчас на рынке стало уже возможно найти такие чудо-устройства.

Обсудить статью ПЕРЕДАЧА ТОКА БЕЗ ПРОВОДОВ МЕТОДОМ ИНДУКЦИИ


Close